
Software Security
Assurance

Tips and Tricks
Guide To

tm

Tips and Tricks
Guide To

tm

Kevin Beaver

Introduction

Introduction to Realtimepublishers
by Sean Daily, Series Editor

The book you are about to enjoy represents an entirely new modality of publishing and a major
first in the industry. The founding concept behind Realtimepublishers.com is the idea of
providing readers with high-quality books about today’s most critical technology topics—at no
cost to the reader. Although this feat may sound difficult to achieve, it is made possible through
the vision and generosity of a corporate sponsor who agrees to bear the book’s production
expenses and host the book on its Web site for the benefit of its Web site visitors.

It should be pointed out that the free nature of these publications does not in any way diminish
their quality. Without reservation, I can tell you that the book that you’re now reading is the
equivalent of any similar printed book you might find at your local bookstore—with the notable
exception that it won’t cost you $30 to $80. The Realtimepublishers publishing model also
provides other significant benefits. For example, the electronic nature of this book makes
activities such as chapter updates and additions or the release of a new edition possible in a far
shorter timeframe than is the case with conventional printed books. Because we publish our titles
in “real-time”—that is, as chapters are written or revised by the author—you benefit from
receiving the information immediately rather than having to wait months or years to receive a
complete product.

Finally, I’d like to note that our books are by no means paid advertisements for the sponsor.
Realtimepublishers is an independent publishing company and maintains, by written agreement
with the sponsor, 100 percent editorial control over the content of our titles. It is my opinion that
this system of content delivery not only is of immeasurable value to readers but also will hold a
significant place in the future of publishing.

As the founder of Realtimepublishers, my raison d’être is to create “dream team” projects—that
is, to locate and work only with the industry’s leading authors and sponsors, and publish books
that help readers do their everyday jobs. To that end, I encourage and welcome your feedback on
this or any other book in the Realtimepublishers.com series. If you would like to submit a
comment, question, or suggestion, please send an email to feedback@realtimepublishers.com,
leave feedback on our Web site at http://www.realtimepublishers.com, or call us at 800-509-
0532 ext. 110.

Thanks for reading, and enjoy!

Sean Daily
Founder & Series Editor
Realtimepublishers.com, Inc.

i

http://www.realtimepublishers.com/
http://www.realtimepublishers.com/

Table of Contents

Note to Reader: This book presents tips and tricks for four software security topics. For ease of
use, the questions and their solutions are divided into topics, and each question is numbered
based on the topic, including

• Topic 1: Managing for Software Security

• Topic 2: Developing for Software Security

• Topic 3: Auditing for Software Security

• Topic 4: Testing for Software Security

Introduction to Realtimepublishers.. i

Topic 1: Managing for Software Security ...1

Q 1.1: What software security-related problems exist in business today and what are the
underlying causes? ...1

The Root Cause..1

Contributing Factors ..2

Q 1.2: What software is affected by poor quality and security vulnerabilities?4

Q 1.3: As a software development manager, why should I be worried about reducing the number
of vulnerabilities in the software my teams produce? ...5

Q 1.4: What are some tangible benefits of enhancing the security of our software?6

Q 1.5: What can I do to feel confident answering the common question “How do I know your
software is secure?” ...7

Q 1.6: Is there a solid security strategy I can implement to help ensure my teams build solid
applications? ..8

Integration with the Software Development Life Cycle ..8

Establish Goals...9

Proven Strategies ...9

Q 1.7: With so many security technologies at our disposal, how it is possible that software is still
being compromised and applications are still being attacked?..10

Q 1.8: At what point in the development process should we focus our efforts in order to
minimize software security vulnerabilities? ..12

Q 1.9: Which software components and functions are plagued by the most security
vulnerabilities and why? ..13

Q 1.10: As a business executive, why should I be worried about security problems with my
company’s software? ...14

Q 1.11: Are there specific areas I should be concerned with regarding the identification and
removal of software security vulnerabilities that arise related to offshoring?...............................16

Q 1.12: Are there specific software security areas I should be concerned with or that might
require a specific approach related to mergers and acquisitions?..17

ii

Table of Contents

Topic 2: Developing for Software Security ...18

Q 2.1: Why should software developers be bothered with tacking on security as yet another task
to have to worry about?..18

Q 2.2: What key areas should our development team focus on to ensure the most solid and secure
applications long term? ..19

Q 2.3: What are some commonly overlooked software security vulnerabilities?20

Revealing Comments ...20

Buffer Overflows ...20

Mishandling Passwords and Logins...20

Assumption that Encrypting Data in Transit Means Everything Is Secure21

Not Considering the Network or Operating System Layers ..21

Q 2.4: How can software security vulnerabilities be categorized so they’re easier to understand?22

Denial of Service..22

Authentication Weaknesses ...22

Input Attacks..23

Directory Traversals...23

Improper Storage of Files and Data ...23

Q 2.5: Are there any common software development practices that stand out as serious risks?...24

Q 2.6: Are there other technologies or layered security measures we can integrate into our
software to help prevent various attacks? ..24

Q 2.7: What role does a layered security defense play in software development?........................25

Q 2.8: There is a general consensus in my development lab that as long as firewalls and Secure
Sockets Layer (SSL) are used, the application is secure—is this true? ...27

Q 2.9: Do I have anything to worry about as long as I develop software with the Open Web
Application Security Project (OWASP) Top 10 vulnerabilities in mind?.....................................27

Q 2.10: What development practices can we integrate into our daily development routines to
reduce the number of security vulnerabilities? ..29

Q 2.11: What development tools can we integrate into our daily development routines to reduce
the number of security vulnerabilities?..30

Q 2.12: Is it really worth encrypting our database if we have implemented various security layers
in our software? If so, what parts of the database should we encrypt?..30

Topic 3: Auditing for Software Security ...32

Q 3.1: What benefits will a formal software audit offer compared with other types of software
security testing? ...32

Q 3.2: What are the different types of tests and tools I can use to assess the security of my
software? ..32

iii

Table of Contents

Q 3.3: How can I determine whether we should perform a software security audit?....................33

Q 3.4: Who should perform formal software security audits?...33

Q 3.5: Which areas of our software should we audit? ...34

Q 3.6: What are some common software security auditing mistakes? ..35

Q 3.7: How can I determine whether we need a formal software security audit or other type of
test such as a manual code review or penetration test?..35

Q 3.8: What features should I look for in software security testing tools?....................................36

Q 3.9: Would a software security audit performed by an external and independent consultant
produce better results than one performed by our own internal IT auditing staff?........................37

Q 3.10: Are there specific software security standards and best practices we can look for to
ensure we’re getting the most from our auditing investment?...38

Q 3.11: Is a source code audit all that is needed to identify the big picture software weaknesses
as well as granular vulnerabilities? ..38

Q 3.12: What should we do once security vulnerabilities have been identified by an audit?39

Topic 4: Testing for Software Security..40

Q 4.1: What methods are available for my developers and quality assurance staff to do their own
software security testing and what are the differences between each method?.............................40

Q 4.2: Who should perform software security testing? ...40

Q 4.3: What software security testing techniques should my quality assurance engineer be
utilizing? ..41

Q 4.4: What software security tests should be performed during a penetration test?....................41

Q 4.5: What are the benefits of performing static analysis code reviews compared with runtime
penetration testing? ..42

Q 4.6: What steps should be taken to ensure the security vulnerabilities found during the testing
phase are properly addressed? ...42

Q 4.7: What is the difference between traditional testing and testing for security?43

Q 4.8: Are there any testing tool features that should exist above and beyond those needed to
perform higher-level audits? ..43

Q 4.9: Is it better to have an external and independent expert perform software security testing?44

Q 4.10: What software security testing tools are the best fit for quality assurance (QA)
professionals?...45

Q 4.11: How are penetration testing tools different from typical software security testing tools?46

Q 4.12: Should we focus time, money, and efforts on performing code reviews, penetration tests,
or both? ..47

Q 4.13: What are some common oversights and mistakes made once the software testing phase is
complete? ...48

iv

Copyright Statement

Copyright Statement
© 2005 Realtimepublishers.com, Inc. All rights reserved. This site contains materials that
have been created, developed, or commissioned by, and published with the permission
of, Realtimepublishers.com, Inc. (the “Materials”) and this site and any such Materials are
protected by international copyright and trademark laws.

THE MATERIALS ARE PROVIDED “AS IS” WITHOUT WARRANTY OF ANY KIND,
EITHER EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE,
TITLE AND NON-INFRINGEMENT. The Materials are subject to change without notice
and do not represent a commitment on the part of Realtimepublishers.com, Inc or its web
site sponsors. In no event shall Realtimepublishers.com, Inc. or its web site sponsors be
held liable for technical or editorial errors or omissions contained in the Materials,
including without limitation, for any direct, indirect, incidental, special, exemplary or
consequential damages whatsoever resulting from the use of any information contained
in the Materials.

The Materials (including but not limited to the text, images, audio, and/or video) may not
be copied, reproduced, republished, uploaded, posted, transmitted, or distributed in any
way, in whole or in part, except that one copy may be downloaded for your personal, non-
commercial use on a single computer. In connection with such use, you may not modify
or obscure any copyright or other proprietary notice.

The Materials may contain trademarks, services marks and logos that are the property of
third parties. You are not permitted to use these trademarks, services marks or logos
without prior written consent of such third parties.

Realtimepublishers.com and the Realtimepublishers logo are registered in the US Patent
& Trademark Office. All other product or service names are the property of their
respective owners.

If you have any questions about these terms, or if you would like information about
licensing materials from Realtimepublishers.com, please contact us via e-mail at
info@realtimepublishers.com.

v

mailto:info@realtimepublishers.com

Topic 1

Topic 1: Managing for Software Security

Q 1.1: What software security-related problems exist in business
today and what are the underlying causes?
A: Software security has recently stolen the spotlight from the typical information security focus
on viruses, firewalls, insecure network protocols, and the like. Although most of the information
threats remain the same, IT industry professionals agree that insecure software is one of the root
causes of security breaches and often leads to a number of business problems. In fact, poor
software security is arguably as big of an issue as the often-cited insider threat that exists in
computer networks—the untrained, careless, and malicious employees that, both intentionally
and unintentionally, wreak havoc on information systems.

At a high-level, software security vulnerabilities adversely affect all types of businesses, from
independent software vendors (ISVs) who develop and sell their own software products to large
corporations that purchase software products for everyday business tasks and practically every
type of user in between. The negative impact of software security problems is seemingly
unending. ISVs look bad and can lose business when their software is found to be vulnerable to
attack, and businesses and individuals alike must deal with system unavailability as well as
having their sensitive information being compromised. These outcomes not only cause
frustration but can easily lead to liability issues, identity theft, and even failure to meet
regulatory compliance requirements.

The Root Cause
The root of the software security problem can be reduced down to the fact that development
managers and security managers are coming at this from two different ends of the business
spectrum. The same goes for hands-on developers and information security assessment experts.
Simply put, these roles have different sets of goals. On the development side, the main goal is to
deliver solid software containing the functionality requested within a specific timeframe. On the
security side, the main goal is to assess risks and find solutions for the critical issues as soon as
possible. These goals are in direct conflict with one another, especially after you add in the
demands and pressures coming down on developers from the heads of marketing and sales, and
the security requirements coming down on security administrators and auditors from the heads of
IT and compliance.

Software developers, and even certain software development managers, are often too familiar
with their own code and processes to be able to see the big picture security problems. Security
managers and network administrators often react to software security problems by implementing
more software and hardware—often expensive products in the form of network and application
firewalls, intrusion prevention systems (IPSs), virtual private networks (VPNs), and strong
authentication systems.

1

Topic 1

In fact, the pervasiveness of software vulnerabilities has created a multi-billion dollar industry of
security add-ons and multi-billion dollars in losses due to software exploits and patch
management needs. There is too much reliance placed on these security products, which creates a
false sense of security among administrators and especially upper managers. These products are
not the answer to software security problems but rather patches to place over fundamental
security flaws at a much lower level that (ideally) shouldn’t be there in the first place.

Security technologies have their place in creating a layered defense, but it’s becoming a well-
known fact that security add-ons cannot be relied upon exclusively. For example, firewalls must
allow certain traffic into the network thus allowing an attacker to sneak in, and encryption often
only serves to hide the fact that an information security breach occurred.

Contributing Factors
It’s easy to see that there is a major business problem with no simple solution. Looking at the
software security problem more closely, there are several additional contributing factors faced in
business today:

• By and large, developers don’t understand security—at least to the level at which they
should. In fact, most are in over their heads simply trying to accomplish the basic feature
sets that were promised to be delivered. However, there are few information security
professionals that truly understand software development concepts. Many information
security professionals don’t understand programming and development to the levels at
which they need to in order to understand the root causes of the very vulnerabilities for
which they’re searching.

• Many software developers and development managers don’t understand the risks and
business impact of insecure software. In addition, they’re not looking at the big picture
and long-term consequences. Such is especially true with niche programmers coding
small or standalone pieces of an application as opposed to developers working at a higher
level who understand the bigger picture. The paradigm must shift to include an
understanding of the business ramifications associated with increasingly complex
software that runs on networked and mobile computer systems.

• The past paradigm of software security is that safeguards and controls should be
implemented by the operating system (OS) or at the network level. As demonstrated by
the common weaknesses associated with firewalls and “allow anyone to do anything”
default OS configurations, such safeguards cannot be relied on exclusively.

• Architectural issues with highly vulnerable legacy software (for example, Microsoft
Windows NT) prevent the remediation of many security vulnerabilities without having to
perform a serious overhaul or even completely re-write underlying code. In addition,
there are complexity issues and inherent vulnerabilities with modern languages such as
Java, C, and C#.

2

Topic 1

• Secure software is not usually the result of fast or efficient coding. It takes time, but in
the business world, time is money. Time-to-market pressures from marketing, sales, and
other powers-that-be plays a large role in software security problems. The focus has been
more on features, getting it done, and getting it out the door more than anything else. This
occurrence is a side-effect of lack of security awareness and placing bottom-line numbers
first—both of which can be overcome but not without the adjustment of priorities and
proper buy-in from key decision-makers.

• The core elements of formal security policies and security standards are often absent—a
major development mistake. Any business function needs structure, goals, and practices
reflecting “here’s how we do it here” in order to be effective. Such is especially true
when it comes to integrating security into the software development process.

• Attackers are quicker to the draw and often have a lot of anonymous time to work on
their exploits. In addition, their security skills are often more advanced than those of
software developers. These shortcomings help fuel the reactive hack-and-patch syndrome
that business applications are subjected to today.

• Customers haven’t demanded more secure software until recently, giving developers,
development managers, and business decision-makers less of an incentive to improve on
the issue.

• Not only are software defects difficult to detect (especially in software that is working
fine otherwise), but the attacks and malware exploiting these defects often go unnoticed
as well.

• The complexity of information systems is growing exponentially. Software is rarely run
in a standalone fashion. Instead, even at the highest level, there are often myriad system
dependencies including hardware, application servers, back-end databases, Internet
connectivity, and more.

• Software is becoming increasingly complex and extensible especially with applications
supporting ‘mobile code’ built around .NET and Java. Most modern OSs such as Linux
and Windows XP and even some office applications such as Microsoft Office are
comprised of millions of lines of code. Even common internal business applications are
made up of hundreds of thousands of lines of code. This complexity introduces bugs and
security flaws.

• Poor software development habits including the lack of a formal methodology,
developing software in non-secure environments, and not using software metrics to
enhance the process of measuring and controlling defects.

A common argument is that the software industry is in its infancy and is simply suffering
growing pains. This reality may be true for certain developers and development languages, but
by and large, most of these underlying software security problems have been around for decades.
Case in point is the Morris Worm that exploited a buffer overflow in the UNIX finger service
way back in 1988! The bottom line is that security vulnerabilities are increasing and software
defects are not decreasing—two key ingredients in the recipe for information systems disaster.

3

Topic 1

Q 1.2: What software is affected by poor quality and security
vulnerabilities?
A: Businesses and individuals alike have come to completely rely on software to deliver the
right functionality at any given time. Software is pervasive throughout businesses and even
affects most individuals in very personal ways. Software is embedded in practically everything
we use—from cell phones and automobiles to network routers and back-end database systems.
Every industry from manufacturing to healthcare uses software to accomplish business tasks.
Poor software quality and system downtime related to security exploits affect many people in
many different ways.

All types of software—from Web browsers to embedded HVAC control systems to highly-
complex e-commerce applications—are impacted by poor quality and security vulnerabilities.
Regardless of the code medium—firmware, standalone programs, operating systems (OSs), and
so on—any type of bug can introduce stability and reliability problems. This situation, in turn,
affects the cornerstones of solid information security, creating problems with confidentiality,
integrity, and system availability—all areas that businesses cannot afford to have compromised.

A critical part of understanding software security is to define security vulnerabilities and
determine when a vulnerability, is indeed, a vulnerability. A security vulnerability is defined as a
flaw or weakness (in this case a software bug) that can be exploited by a threat (an attacker or
malware) to cause harm or damage. However, not every software bug is a security vulnerability,
so what constitutes a true security vulnerability? Technically, a vulnerability that can be
relatively easy to exploit and

• Cause software to hang or crash (considered a Denial of Service—DoS—attack)

• Allow for privilege escalation on the system (for malware or an attacker to be promoted
from a standard user to an administrator-level user in order to do more damage)

• Allow for execution of “arbitrary code” that can execute specific instructions, install
backdoors, steal information, and more

• Cause software to act in unintended ways

The critical issue to remember is that no software is immune from poor quality or security
vulnerabilities. No matter which development language or OS platform is used, software flaws
can crop up anytime and anywhere.

4

Topic 1

Q 1.3: As a software development manager, why should I be worried
about reducing the number of vulnerabilities in the software my teams
produce?
A: There are several underlying business-related reasons why reducing software vulnerabilities
is important. First and foremost, it costs money. Fixing software security defects after the fact is
much more expensive than doing it right the first time. This has a great impact on development
budgets and resources.

Looking deeper, the software development function can be generically compared with a
business—there are customers driving certain demands and people work together to meet those
demands. There are both long-term strategies and short-term tactics that must be executed at the
right place and right time to keep customers happy and wanting to come back for more.

Take the current software quality problems and juxtapose them into another industry such as
automobile manufacturing to illustrate the possible negative outcomes of poor development
quality. In fact, if a major automobile company followed the path of poorly written software and
put out unsafe vehicles that are susceptible to known failures at any given time, can you imagine
the uproar, the injuries, and the lawsuits? All in the name of ‘time-to-market’ or ‘features first.’

Imagine what would happen to development managers whose teams generate sloppy code if they
were out on their own trying to make such a ‘business’ prosper. Many development teams have
gotten away with it, but history tells us that the market likely won’t have it that way for long.
We’re arguably at that point in time where those who don’t integrate secure coding practices into
their development processes and generate higher-quality software won’t survive in the
marketplace.

Vulnerable software contributes to a multi-billion dollar problem, based solely on costs
associated with reported attacker and malware attack losses. There are untold software security
problems and exploits (and thus costs) that go undiscovered and unreported. Two rather obvious
negative side-effects of software vulnerabilities are unhappy management and let-down
customers. However, there are various indirect business-related consequences that must be
considered as well, such as a reduction in customer referrals and even cash flow problems caused
by customers who don’t want to pay for defective goods. Moreover, several technical issues
result from insecure software such as:

• Data corruption

• Rogue commands executed

• Unnecessary system resource usage

• Denying service to legitimate system requests

• Entire networks brought down

• Installation and propagation of malware—including rootkits—throughout the network

5

Topic 1

In addition, poor development practices can lead to numerous ongoing software patches and
hotfix requirements. The obvious benefit is that the issues are remediated and the software is
perceived to be more solid. However, the ongoing pattern of break-fix also generates several
side-effects for both the developer and the end user including:

• Increased number of support calls

• Having to support customers running code that is several revisions old

• Greater odds of failing to meet support service level agreements (SLAs)

• Increased systems administration

• Potential for regression (the introduction of new software problems when fixing others)

Odds are, these aren’t outcomes that any reasonable development manager would wish on
anyone, but they’re realistic issues that can’t be overlooked nonetheless.

Q 1.4: What are some tangible benefits of enhancing the security of
our software?
A: There are many tradeoffs associated with software security. It boils down to increased time
and costs on the front end doing the actual development or increased time and costs on the back
end trying to keep the software secure by other means. If a good balance can be found, the list of
benefits associated with enhanced software security is limitless including:

• Customer-related benefits

• Customer recognition that the organization takes security seriously

• Increased customer satisfaction and loyalty

• Increased customer referrals

• Enhanced value and return on their investment

• Development-related benefits

• Simpler security integration long-term when security is built-in at the earliest
possible phase

• Security problems are much easier to find early on in the initial software design
and development phases, minimizing complexities associated with fixing the
problems and reducing development-related risks

• Business-related benefits

• Enhanced industry positioning and reputation

• Positive revenue and other financial benefits related to selling more licenses

• Enhanced employee morale knowing that software the business develops, sells,
supports, or uses is solid and dependable

• Improved long-term business viability

6

Topic 1

• Compliance and legal-related benefits

• Better opportunities to maintain regulatory compliance internally or help others
achieve regulatory compliance by using more secure software

• Improved ability to meet deliverables, contracts, and associated business
responsibilities which can, in turn, decrease legal liabilities

• Increased protection of intellectual property, individually identifiable information,
and other sensitive data

Software quality is directly related to software security, which can have far-reaching and long-
term business impacts if achieved. When software is developed with security in mind and the end
product is more secure and stable, everyone associated with the software ultimately benefits.

Q 1.5: What can I do to feel confident answering the common
question “How do I know your software is secure?”
A: With the myriad privacy and security demands coming from customers, business partners,
and regulatory bodies, this question is being asked more and more in today’s business
environment. These demands are changing the way organizations think about software quality
and security—especially in the area of product marketing. Many in-house developers and
independent software vendors (ISVs) claim that their software is secure—some, such as Oracle,
go as far as to claim that their software is unbreakable.

Like most reality veiled by marketing hype, more often than not, software isn’t as secure as it’s
claimed to be. This reality sets up everyone involved for failure. If ‘robust’ or ‘secure’ software
is claimed, then it must be able to live up to this claim. Those using the software need to know
that secure practices are being considered and properly executed. But how can you effectively
convey that message?

The best, yet most elusive, method for making your software secure is to integrate solid security
practices into the development process. It won’t ensure security, but odds of improvements are in
your favor—and it can give you (and other stakeholders) a boost of confidence that things are
being done right.

Another effective way to feel strongly that your software is secure is to actually test it using
manual or automated code reviews and various other security assessment tools. This step may be
enough, but if you dare, you might want to share the results of your security testing with your
customers to demonstrate that your secure processes are actually working.

Your software security testing could come in the form of internal tests or you could hire a third-
party to look for vulnerabilities from a fresh and unbiased perspective. Both are effective means
of discovering vulnerabilities and can be an effective way to prove that your software is secure as
claimed.

Your software development practices may also be part of obtaining certain organizational
certifications such as ISO 9000-9001 and ISO/IEC 12207 as well as meeting various NIST
standards such Special Publications 800-27, 800-55, and 800-64.

7

Topic 1

Keep in mind that even though security testing and remediation has taken place or international
standards have been met or certifications have been obtained, there is absolutely no guarantee
that every possible vulnerability has been discovered and/or prevented. Software and the
interconnected information systems it runs on are simply too complex to guarantee that nothing
has been overlooked. However, implementing such practices and performing due diligence to do
what is right will put your organization well ahead of others in this area—undoubtedly a
commendable way of doing business.

Q 1.6: Is there a solid security strategy I can implement to help ensure
my teams build solid applications?
A: In an ideal world, software would change very little, if ever. This reality would help ensure
software security, but at what cost? Not innovating or responding to market and customer
demands is arguably the fastest way for software vendors and developers to crash and burn.
Further complicating matters, human involvement in any business process introduces serious
complexities that require awareness, training, structure, and effective management.

Instead of pointing fingers and placing individual blame, it makes the most sense to look at this
situation from a neutral business perspective. Solid software security involves various factors
and various people—a true business problem that requires a solid business solution.

Integration with the Software Development Life Cycle
A fundamental weakness contributing to poor software security is that most security weaknesses
are discovered too late in the game. This fact is driving the need for improved development
processes and improved methods of testing for security vulnerabilities. In order to build secure
software, information security needs to be integrated into every phase of the software
development life cycle (SDLC):

• Plan—Determine big picture security goals to answer the why, when, where, and how
questions

• Specify requirements—Outline specific controls needed to accomplish security goals

• Analyze—Determine which security features will make it into the final code

• Design—Map out how security controls will be integrated into the project

• Develop—Write the actual security code and/or integrate external security modules and
perform static analysis

• Test—Assess the security controls via unit testing (how individual components work)
and integration testing (how everything works as a whole)

• Implement—Deploy the software in the specific environment to meet your or your
customer’s specific needs

• Post-implementation review—Follow up the implementation by retesting the source code
and running software

• Maintain—Perform ongoing tests for defect tracking and subsequent improvements

8

Topic 1

Obviously, all these practices cannot be implemented directly and immediately into existing
applications, but they can be integrated over time during major revisions and with new projects.

Establish Goals
A common mistake is to outline security goals during the planning phase—such as
confidentiality and integrity of all data and validation of all application input—but then overlook
them or place them on the back burner. This happens often by even the most well-intentioned
developers. The truly effective software development team needs to have clearly defined steps
that outline specifically how each goal will be met. For example, in order to meet a goal of data
confidentiality and integrity, the development team must know about and be held accountable for
items such as:

• Using TLS (or SSL v3) for all network transactions containing credit card information

• Considering the key length and relative strength of the cipher used

• Encrypting all database tables containing personal healthcare information

• Creating detailed audit log entries each time a user accesses information classified as
sensitive or confidential via the application

This process may require the input and oversight of a security-savvy developer or even a
technical member of the organization’s information security team.

Proven Strategies
Other strategies for ensuring secure applications include:

• Integrating secure development into job description requirements and holding developers
accountable

• Providing developers ongoing training and awareness in security concepts and techniques
such as what is provided at security conferences, in formal classroom training, and the
wide selection of recent books on developing secure software

• Ensuring the lines of communication between developers and security team member is
open and utilized

• Focusing on being proactive in addressing known security vulnerabilities—especially in
the pre-deployment phase

• Determining, beforehand, how you want to focus on security vulnerabilities once they’re
identified. This could be:

• Focusing on issues that can be addressed in the existing development stage

• Focusing on implementing changes moving forward with any new code

• Waiting until time permits to go back and fix the problems from the beginning

• Documenting secure software development policies and standards

• Performing static analysis during the development and post-implementation phases

9

Topic 1

• Integrating well-known software security-related standards and frameworks such as the
Open Web Application Security Project (OWASP), the ISO/IEC 17799:2005 Information
technology—Security techniques—code of practice for information security
management, and ISO/IEC 12207:1995 Information technology—Software life cycle
processes

• Establishing specific metrics for software security and measuring for success

• Making quality assurance (QA) a key area of the development environment with the
proper resources to affect change

• Continually testing software for new exploits

It’s also critical for developers and development managers to be able to assess which issues need
priority attention. Vulnerabilities that are known to be easily exploitable and expose sensitive
information or harm critical systems should get the most resources and attention.

A buffer overflow that allows for remote code execution is a popular example of a software
vulnerability that needs to be given top priority. However, potential weaknesses that may be
exploited or pose a threat down the road can be addressed as soon it makes business sense. An
authentication algorithm that could possibly be cracked given enough time with the right tools
would be an example of a low-priority software vulnerability.

Eliminating all software vulnerabilities and defects found is not realistic. Instead, go for the
highest payoff tasks that will have the greatest impact on the overall security and quality of your
software.

Q 1.7: With so many security technologies at our disposal, how it is
possible that software is still being compromised and applications are
still being attacked?
A: At the root of this problem is a disproportionate focus and dependency placed on security
technologies by network administrators, IT managers, and even C-level executives. The
marketing machine of security safeguard vendors is extremely powerful and influential, pushing
security add-ons such as:

• Firewalls

• Intrusion detection systems (IDSs) and intrusion prevention systems (IPSs)

• Strong authentication systems

• Antivirus and anti-spyware software

• Virtual private networks (VPNs) and related data transmission protection measures

10

Topic 1

According to Gartner estimates in 2004, the majority of the $5 billion IT security market was
spent on these types of security solutions. However, in the real world, it’s being proven over and
over that these technical solutions are not the answer to software security problems:

• Firewalls can filter traffic and help prevent Denial of Service (DoS) attacks but won’t
protect software inside the network and only offer very limited protection for applications
that must be accessible through the firewall.

• IPSs can generate alerts and sometimes prevent network and host-based attacks but offer
little to no protection against application input attacks, application authentication
compromises, exception handling, insecure storage or transmission of sensitive data, or
malicious activity by anyone with authority on the network.

• Strong authentication systems can verify a user is who the user says he or she is but offer
no protection against any unauthorized usage or other software attacks.

• Malware protection software detects malicious signatures and some anomalous behavior
but not nearly enough to prevent the seemingly benign software attacks that occur most
often.

Most of these technologies respond to security breaches rather than prevent them, and even when
used in conjunction, they cannot provide complete security—not even close.

As with many other deep-rooted business issues, vendor-supplied ‘cures’ abound while the root
causes of the problems are overlooked. The fundamental problem with software security is
within the software itself. Subtle (and not so subtle) flaws are introduced, discovered, and
exploited over time, which can lead to major business problems for both the software developers
and the software users.

The underlying problem is essentially a failure to integrate secure programming into the software
development life cycle. This shortcoming encompasses issues such as developers not
understanding security, failure to test for security holes via static analysis and penetration testing,
and management placing more value on functionality and hard deadlines than security.

Developers and systems administrators are also failing to look at their software and systems from
an attacker’s point of view. They’re performing their own security reviews but not looking at the
software as a whole from different perspectives with different testing tools to determine which
parts provide interesting information and which can be exploited.

Technical schools, colleges, and universities have played a significant role in the software
security dilemma. In programming courses, the majority of the focus is placed on learning
specific languages and programming—instruction sets, syntax, and so forth—rather than learning
how to develop larger systems with security in mind from the ground up. This lack of security
education from the start further perpetuates the software security problem.

This movement is starting to change, but academia is still far behind what is needed in the
industry as evidenced by computer science graduates and entry-level programmers. In fact,
simple scans of course offerings at some of the top technical schools in the United States
highlight the minimal focus on software security assurance. There are tons of courses offered on
software engineering, data structures, and algorithm analysis but only minimal special topics
courses dedicated to secure software development.

11

Topic 1

The bottom line is that more people in marketing and upper management are more concerned
with delivering applications to meet every user’s needs and desires. There is still a strong belief
that security can be added on later. This philosophy helps companies meet quarterly numbers but
is very dangerous and shortsighted and ends up taking away from the user experience and
creating unnecessary business liabilities long-term.

Q 1.8: At what point in the development process should we focus our
efforts in order to minimize software security vulnerabilities?
A: It has been said by software security experts for years that secure coding practices
vulnerability testing must be integrated into the entire software development life cycle as Figure
1.1 shows.

Figure 1.1: The steps involved in the software development life cycle.

Implementing this process is much easier said than done but it’s a proven way to develop solid
code and prevent unnecessary security flaws. It’s therefore critical to ensure that software
security goals and metrics are established, buy-in is obtained, and everyone involved with secure
development practices (programmers, developers, testers, quality assurance—QA—staff,
information security team, and management) is working toward making improvements.

12

Topic 1

There will likely be existing applications in development and legacy applications that simply
cannot be overhauled immediately. However, as a development or application maintenance
manager, you can establish mandates based on business needs that can help make immediate
improvement such as:

• All new code moving forward will adhere to specific security standards and be measured
according to the metrics you’ve established

• No further development or maintenance occurs unless and until security flaws labeled as
critical are addressed

Obviously, risks, rewards, and costs must be balanced when determining how to address current
problems. It’s therefore essential to include other stakeholders and decision-makers outside of
development in the process.

By integrating secure coding practices and security testing into the entire development process,
you can help prevent the spread of software security flaws (both known and unknown) when
code is reused by developers. In addition, it’s much less expensive, less disruptive, and easier to
make changes when software security flaws are prevented, or at least tested for, early on in the
software development life cycle. If secure development practices are not integrated into the
process and security testing is not performed until the latter phases of the development life cycle,
software fixes and redesigns are, at best, very difficult to deal with and remediate.

Q 1.9: Which software components and functions are plagued by the
most security vulnerabilities and why?
A: Security flaws are introduced to practically every area at every level of the software
development life cycle—especially in the plan through develop steps (for an illustration of the
software development life cycle, see Figure 1.1 in Q 1.8). This reality applies to not only
commercial software but also in-house applications regardless of the platform or programming
language used.

Many security vulnerabilities start at the ground level when development teams overlook
security when architecting an application. This shortcoming can come in the form of weak
authentication methods, easily cracked encryption cipher suites, or even relying on the
underlying operating system (OS) to be secure. As developers get deeper into a project, security
vulnerabilities can be introduced by using functions that are known to be vulnerable, such as the
infamous C-language gets() and strcpy(), or through general sloppiness and laziness such as not
validating user input into the program.

Generally speaking, memory problems such as buffer overflows, improper format string
handling, and integer overflows comprise the majority of software security problems. Other
common problem areas include weak password management, flawed access controls, and
improper error handling.

In addition, many legacy applications developed before security was an issue and previously
shielded from attack inside the corporate network, are being made Internet-accessible. This
development introduces a slew of previously undiagnosed flaws for any attacker to exploit.

13

Topic 1

Interestingly, new software problems are few and far between. Developers are simply
introducing the same vulnerabilities and performing the same mistakes over and over again. The
vulnerabilities listed in the National Vulnerability Database (http://nvd.nist.gov) and Common
Vulnerabilities and Exposures (CVE) dictionary (http://cve.mitre.org/cve) help prove this.

Q 1.10: As a business executive, why should I be worried about
security problems with my company’s software?
A: Businesses are working to meet consumer and business partner demands by developing more
complex software to facilitate online services, manage supply chains, and more. Unfortunately,
more focus is often placed on functionality and deadlines than on creating secure applications.
With the growing demand and dependence on complex, interconnected software, there is more to
lose now than ever. There is more sensitive personal information being gathered and stored
electronically, more industry and government regulatory compliance requirements, and more
business dependence on software and computer systems. The fact of the matter is that when
software breaks, time is wasted and money is lost.

In a 2004 press release, Gartner stated that enterprise configuration management and security
incident response costs would each be reduced by 75 percent if half of all software security
vulnerabilities were removed prior to production. Executive management should be concerned
about the security of software they’re developing and/or using for the following reasons:

• Costs associated with fixing software defects after the fact are much greater compared
with fixing them during the development process. Johanna Rothman’s study (available at
http://www.jrothman.com/Papers/Costtofixdefect.html) on this subject is very
enlightening.

• The ability to show that security and privacy are taken seriously is being considered by
customers, business partners, and regulators.

• Secure software is an effective way to create product differentiation.

• Perceived product value can add to the bottom line.

• Customer satisfaction will be improved through secure software, which can lead to more
referrals.

• Secure software ensures repeat business, which can lead to increased revenues.

• Meeting industry and governmental regulatory compliance requirements—such as those
imposed by the Gramm-Leach-Bliley Act (GLBA), the Federal Financial Institutions
Examination Council (FFIEC), the Health Insurance Portability and Accountability Act
(HIPAA), and the Sarbanes-Oxley (SOX) Act—is not optional.

• Secure software provides protection against downstream liability issues.

Organizations are being questioned by customers and business partners about how secure their
software is. As a result, and due to legal requirements and increased awareness of the problem,
smart business leaders are buying into the need for secure solutions. It would behoove any
executive to understand what is taking place and be able to answer this question when prompted.

14

http://nvd.nist.gov/
http://cve.mitre.org/cve
http://www.jrothman.com/Papers/Costtofixdefect.html

Topic 1

There are numerous benefits associated with producing secure software that are difficult if not
impossible to quantify. Because of the lack of hard numbers to support such claims, these
benefits are overlooked but need to be considered nonetheless. When software is secure and
stable, the following can occur:

• Increased customer confidence and loyalty

• Increased brand image and perceived product value

• Decreased level of perceived risks when using the software

• Increased stakeholder and shareholder value

• Increased trust in the organization’s leadership to do the right thing

• Increased employee morale

• Increased goodwill to customers, the industry, and even the environment

• Improved long-term business viability

• Increased productivity among developers, administrators, and end users

With millions of lines of abstract code, software is extremely complex. This complexity can
introduce numerous software defects that can lead to security vulnerabilities—on the scale of 5
to 10 unique flaws per 1000 lines of code! By making software security a top priority,
organizations can differentiate themselves from others by offering software that has been
validated to be as secure as possible. Solid and secure software can bring peace of mind and will
become a point of reference for a growing number of software buyers and users in the future.

Furthermore, the type of software used or the industry your company is in is irrelevant as
security problems affect software across the board (albeit the consequences of security flaws are
greater for some than others—such as the Department of Defense compared with an online
greeting card company). Changing programming languages and operating system (OS) platforms
won’t make a difference. Hiring new developers and development managers won’t likely help
either.

What will make a difference are managers and executives who support secure development
principles such as sponsoring continuous developer training, establishing and measuring against
software security metrics, and encouraging ongoing security testing. It’s essential for managers
and executives to lead by example and help establish a culture of security—if they don’t, then
who will?

15

Topic 1

Q 1.11: Are there specific areas I should be concerned with regarding
the identification and removal of software security vulnerabilities that
arise related to offshoring?
A: Oftentimes, code is used from third parties without a single thought going into whether the
code is secure. When offshoring software development (or any type of development outsourcing
for that matter), various precautions need to be taken to ensure not only the protection of source
code but also the prevention of security flaws, backdoors, and future liabilities.

Attempting to achieve full control over remote development teams can be difficult, but there are
several areas you must focus on to keep from getting burned. Ensure the following questions can
be confidently answered to help prevent, detect, and correct problems and risks associated with
offshoring and outsourcing:

• Does the contract spell out audit provisions and specific details regarding who is
responsible for security defects?

• What constitutes a security vulnerability (buffer overflows, code/command injection, lack
of input filtering, poor error/exception handling, and so on)?

• Does the outsourced team understand your security goals and standards?

• Does the outsourced team understand your coding policies?

• Is the security of outsourced code improving, remaining the same, or getting worse?

• Which team or team members are writing code that is not secure? How can this problem
be addressed?

• Is someone on your team performing static analysis and penetration testing on new code
developed by your outsourcing provider?

• Will an independent outsider be hired to perform an unbiased software security
assessment?

• Will details on the security functionality be part of the final deliverables?

• Is a delta analysis being performed to determine the differences (and consequential flaws)
between what you sent out compared with what you get back?

Establishing security criteria, ensuring that outsourced teams understand your security needs, and
holding outsourced teams responsible for software defects is not a simple task but needs to be
part of the overall process. Including a code integrity warranty such as those dating back to the
original mainframe days may seem like overkill and may even be impossible to put in place but
is worth considering. By getting the legal department, information security, and other key
decision makers involved in this process, you’ll know you’ve performed your due diligence and
everyone will go into the business venture with their eyes wide open.

16

Topic 1

Q 1.12: Are there specific software security areas I should be
concerned with or that might require a specific approach related to
mergers and acquisitions?
A: Mergers and acquisitions are a complex topic that requires experienced legal and business
advice. As with offshoring and outsourced software development, it’s critical to ensure everyone
is on the same page going into business ventures such as these.

It’s not uncommon for developers and development managers to have complex software that is
riddled with security holes dumped onto their plates as part of a business merger or acquisition.
Key areas of due diligence to ensure software security assurance isn’t pushed to the wayside
during mergers and acquisitions include:

• How do you know what is contained in the merging/acquired company’s source code?
Will they readily share their source code and perform the appropriate knowledge
transfer?

• Is the merger or acquisition contingent upon an internal or third-party review of existing
source code?

• What tests have been and will be run to understand inherent software security risks?

• Who is responsible for cleaning up software riddled with security flaws?

These business concerns may not fit politically or be addressable financially during a merger or
acquisition. It’s the job of software development managers to at least ensure key decision makers
are made aware of these issues and make the final call to move forward.

17

Topic 2

Topic 2: Developing for Software Security

Q 2.1: Why should software developers be bothered with tacking on
security as yet another task to have to worry about?
A: It’s true that marketing, upper management, and customers are demanding more from
developers—such as complex user interfaces (UIs), system scalability, and network
interconnectivity—than ever before. What more can be piled on top of the never-ending demands
and unrelenting complexity of software today? Security of course! It has been demonstrated
more than a handful of times that distracted and lackadaisical software developers contribute to a
large portion of the security-related flaws present in our software today. Having said that, it can
be difficult for even the best developers to avoid security-related mistakes—especially because
it’s virtually impossible to detect many security flaws without a full system context and analysis.

Unfortunately, attackers, malware, and disgruntled employees exploiting previously untouched
software flaws are an increasing threat to businesses and industrialized economies. As
applications become more extensible and networks more interconnected, software security
vulnerabilities are growing in number. They’re also becoming easier to find and simpler to
exploit while enabling attackers to easily cover their tracks.

No business wishing to survive in this information age can afford to fall victim to poorly written
software. Because of this, no developer looking for a successful career in software development
can afford to overlook critical secure programming practices. Trouble tends to trickle downhill
and developers will ultimately suffer the consequences as more people learn to see through the
marketing and public relations twists often used to cover up current software development
problems.

In a perfect world, software developers would stay a step or two ahead of the black hats.
Realistically, however, most security-savvy developers are doing great if they’re even a step or
two behind. The short-term goal of security-savvy developers should be to stay on track with the
bad guys and then pull ahead in the race long term.

Integrating security into the coding process—as opposed to layering security protective measures
on top—is essential to preventing computer and network attacks. Moving forward, the most
successful software professionals won’t be the ones writing the most lines of code or designing
the fanciest routines but rather the ones that have the foresight to see big picture items (such as
security) and the business value they have to offer from a broad developer’s perspective.

18

Topic 2

Q 2.2: What key areas should our development team focus on to
ensure the most solid and secure applications long term?
A: First and foremost, developers should focus on building in security as early on in the process
as possible. Simply adding security patches on top of existing code is not very effective. This
focus is much easier said than done, but even small steps taken now can make a big difference
long term. Building in security up front requires current knowledge of software security exploits,
secure development practices, and the proper testing tools. Development managers—and
developers themselves when possible—should obtain periodic training in secure development
and familiarize themselves with and utilize high-quality software security testing tools, as they’re
the key elements for secure development.

Developers should also utilize widely-accepted security standards whenever possible. This
includes Transport Layer Security (TLS) for protecting data in transit and AES encryption for
securing data at rest. There are also widely-accepted best practices for developing secure
applications—such as the Secure Coding: Principles & Practices homepage
(http://www.securecoding.org) or the OWASP Top 10 Project
(http://www.owasp.org/documentation/topten.html)—that provide minimum standards for Web
application security that developers need to fully understand. Additionally, special attention is
owed to buffer overflows because the majority of software security vulnerabilities are based on
them.

It doesn’t matter how solid your software applications are if the underlying operating system
(OS) is not secure. Therefore, the OS platform (Windows, Linux, UNIX, OS/400, and so on)
plays a small role in long-term security as well. For example, the versions of the Windows OS
based on the NT platform (Windows NT, Windows 2000, Windows XP, and Windows Server
2003) have certain well-known architectural flaws that have proven difficult to overcome.
Likewise, certain hardware platforms can offer protection against software security exploits such
as the buffer overrun protection built-in to Intel’s Itanium 2 architecture. For new software
projects, it would behoove the savvy development team to consider these variables. Standards
and best-practices organizations such as NIST and The Center for Internet Security are a good
starting point for OS security resources.

The programming language of choice plays an ever smaller role but is something that should be
considered. For example, C and C++ tend to have more inherent vulnerabilities than, say Java or
.NET. Many languages have inherent security vulnerabilities (C and Visual Basic) that can be
difficult, if not impossible, to overcome, while others were designed to be security-friendly with
their memory protection and sandboxing capabilities (Java and C#).

In less security-friendly languages, developers may end up spending more time trying to find
secure ways of writing code to work around built-in problems instead of focusing on the tasks at
hand. Having said all of this, the language selected clearly has certain long-lasting impact on
secure coding practices, but no language is immune to security problems regardless of any
claims otherwise.

19

http://www.securecoding.org/
http://www.owasp.org/documentation/topten.html

Topic 2

Q 2.3: What are some commonly overlooked software security
vulnerabilities?
A: There are several areas that contribute to software security problems yet go unnoticed until
it’s too late.

Revealing Comments
Oftentimes, developers and quality assurance (QA) staff place comments in HTML, JavaScript,
and other easily accessible code that reveal too much into about the application, the system its
running on, the development team, and even the organization itself. Information revealed may
include passwords, bugs in a routine, personal information about developers, and more. These
comments are not necessarily malicious in intent, but they can give an attacker a leg up on
breaking into the application or associated systems.

Buffer Overflows
Information security professionals and developers alike agree that buffer overflows comprise a
large portion of the software security vulnerabilities in existence. Buffer overflows occur when a
program copies data to an address space that is too small to hold everything. Buffer overflows
are especially risky in the highly popular C and C++ languages with the gets(), sprintf(), and
strcpy() functions. Given that there are so many variables involved, no matter how long and hard
we try to prove that a buffer overflow is not possible, there is no way to know for sure. Thus, it is
important to not even introduce any variables that can contribute to the problem.

Mishandling Passwords and Logins
There are several ways that developers handle passwords in their software to introduce
vulnerabilities:

• Storing passwords in RAM or in cookies that are easily discovered

• Encoding (not encrypting) passwords—especially as part of a URL string—that can be
unencoded relatively quickly

• No minimum password requirements or insecure requirements that are susceptible to
dictionary or brute force attacks

• Not implementing intruder lockout to thwart application login tampering including
dictionary and brute-force password attacks or implementing too short of a lockout time
(a few seconds to a minute or so as opposed to 5 to 10+ minutes)

• Login-related error messages that reveal too much information about how the application
utilizes user IDs and passwords, such as when an application returns single messages
such as “Invalid username” or “Password incorrect” that can give an attacker a leg up

20

Topic 2

Assumption that Encrypting Data in Transit Means Everything Is Secure
Many developers and even the average computer user believe that just because data is encrypted
or otherwise protected in transit means that it’s secure. For example, the TLS protocol can
certainly prevent someone from reading data as it goes across the wire (or air in the case of
wireless networks), but it’s not the silver bullet for security. In fact, most security breaches occur
against data at rest. In this case, data encrypted in transit just means that you can’t see what the
attacker is doing! Encrypting data in transit serves as another layer of security, but should not be
relied upon by itself.

Not Considering the Network or Operating System Layers
Many software security vulnerabilities are exploited by breaching the network infrastructure or
underlying operating system (OS) instead of attacking the applications directly. This calls for
consideration of the network architecture and OS configuration in areas such as:

• Where the application resides relative to the public Internet, DMZ, and internal network

• How the application communicates with clients

• How the application communicates with any associated databases (directly with the
database on the same network segment or across the firewall to the database in a DMZ)

• Whether the application will reside on the same system as the back-end database

In addition, a really secure application doesn’t do much good on an easily compromised OS.
Therefore, it is critical to change the default settings to harden the underlying OS (or at least
recommend it to the software end user) according to best practices such as NIST’s Guidance for
Securing Microsoft Windows XP Systems for IT Professionals and Systems Administration
Guidance for Windows 2000 as well as The Center for Internet Security’s Benchmark and
Scoring Tools. Likewise for any associated Web servers, databases, and storage servers.

Software that must run as an OS service or daemon can also introduce vulnerabilities if it uses an
administrator, root, or other system-level account. If a vulnerability in the software is exploited,
the exploitation can lead to malware or an attacker having full administrative rights on the
system to do just about anything. Such operation may be required, but such exploit scenarios
need to be considered nonetheless. This is yet another critical issue that highlights the need for
increased software security.

21

Topic 2

Q 2.4: How can software security vulnerabilities be categorized so
they’re easier to understand?
A: Software security vulnerabilities often mean one thing to developers and something quite
different to information security professionals. There are various well-known categories of
software exploits. Also, keep in mind, there unknown software flaws that won’t necessarily
cause immediate problems or crash systems but will likely rear their ugly heads eventually. The
following is a high-level categorization of known software vulnerabilities.

Denial of Service
Denial of Service (DoS) occurs when software is overloaded and cannot serve legitimate
requests:

• Buffer overflows including integer errors and risky functions such as strcpy

• Format string mishandling

• Race conditions and other timing problems that cause a system to get stuck in a loop

• Exception mishandling whereby a problem arises that the program isn’t prepared to
handle

Authentication Weaknesses
Authentication weaknesses introduce problems that affect the access to software and systems
leading to unauthorized usage and breaches of sensitive information. This includes:

• Application logins with no dictionary or brute force attack protection

• Shared user accounts

• Weak or no password security requirements

• Revealing information returned via application error, Web page, or URL strings

• Manipulating login parameters set via unsecure cookies

• Session hijacking whereby an attacker guesses subsequent session IDs and is able to tap
into a communications session

22

Topic 2

Input Attacks
Input attacks occur when user or related system input is not validated for length, content type,
and so on which can lead to system crashes or provide access to associated databases, drives, and
so on. This includes:

• Login prompt manipulation by overflowing the input buffers

• Login form manipulation including manipulation of hidden fields to change data
submitted and cross-site scripting that redirects user input

• Automated input attacks such as completing and submitting forms repeatedly or
manipulating email confirmations to obtain unauthorized access

• URL manipulation such as SQL command injection and blind SQL command injection
(server error pages are disabled but injection and manipulation occur via inference)

• Command injection to control the application and underlying operating systems (OSs)

• Obtaining and/or decoding information used in GET submissions in HTML forms

Directory Traversals
Directory traversals allow an attacker or an automated system such as a WebBot to browse
through directories associated with the software and elsewhere to glean system information and
sensitive data or exploit insecure sample scripts. This includes:

• Improper file and directory access controls (by both applications and their underlying
OSs) exploitable via FTP, telnet, and more that allow direct data access and system
manipulation

• Missing or misconfigured robots.txt file that allows for Web server directory traversals to
map out entire Web sites

• Path injections to access other system paths and files

Improper Storage of Files and Data
Sensitive information is often scattered about directories with minimal or no access controls.
This includes:

• Temporary files that should have been removed

• Text files and even databases that should not be stored in clear text or on the same system
as the application

• System configuration files including password files

• Source code including default scripts

• Easily guessed file names

The OWASP Top 10 document is a useful resource for more Web application-specific
vulnerabilities. More information can be obtained from the Common Vulnerabilities and
Exposures dictionary, which outlines product-specific vulnerabilities in detail.

23

Topic 2

Q 2.5: Are there any common software development practices that
stand out as serious risks?
A: There are hundreds, if not thousands, of ways to develop insecure software, but the most
obvious practices can be reduced to a few fundamental factors. Whether a development team has
3 or 30 members and a timeline of 3 weeks or 3 years, the following (listed in order of
importance) are risks that no team can afford to take when it comes to ensuring software
security.

• Failure to establish formal software security objectives and requirements in advance, such
as authentication techniques, data storage methods, input validation, rights management,
and so forth to set expectations and get everyone on the same page

• Lack of a unified security front by all development and quality assurance (QA) staff
members

• Not integrating secure coding practices in the pre-deployment phases

• Failure to implement secure coding practices during the entire software development life
cycle (SDLC) from planning to implementation and beyond

• Lack of acknowledgement of the need for and failure to establish contingency plans for
security vulnerabilities that cannot or will not be addressed or remediated

• Using live data in testing and QA that can easily and unnecessarily expose sensitive
personal information, intellectual property, and so on

Q 2.6: Are there other technologies or layered security measures we
can integrate into our software to help prevent various attacks?
A: The cornerstones of information security are confidentiality, integrity, and availability. As
critical as software security is, it’s still only one component of a truly secure environment that
supports and enables these elements of security assurance. The following are components
developers should take into consideration (but not rely upon) when planning for security and
integrating controls into their software:

• Network-based firewalls and intrusion prevention systems (IPSs)

• Host-based firewalls and IPSs

• Application-specific firewalls and IPSs

• Strong authentication systems such as smart cards, tokens, and RADIUS servers

• Web server and database access controls and intrusion prevention safeguards

• Operating system (OS) file, directory, and share permissions

• OS hardening using best practices from The Center for Internet Security, NIST, and
others

24

Topic 2

Q 2.7: What role does a layered security defense play in software
development?
A: The concept of a layered security defense—often referred to as defense in depth—is a
fundamental requirement for effective information security. Layered security consists of several
controls and countermeasures working in conjunction with one another in a layered fashion with
the goal being that if one defense fails or is subverted, other defenses are in place to ensure
continued protection of the core system (that is, critical application, database, or other sensitive
information). Figure 2.1 provides an example of a generic layered network security defense.

Core
System

25

Figure 2.1: Layered network security.

Defenses you might expect to see at the respective layers include:

• Application defenses such as input validation and login timeouts

• Host defenses such as antivirus software and host intrusion prevention systems (IPSs)

• Operating system (OS) defenses such as file permissions and unique user IDs

• Network defenses such as firewalls, IPSs, and virtual private networks (VPNs)

• Physical defenses such as biometrics and security cameras

Physical
defenses

Network
defenses

OS
defenses

Host
defenses

Topic 2

When it comes to secure software development, a layered defense plays two roles. First, the
layered defenses that Figure 2.1 shows can supplement security controls built-in to an
application. These defenses are (unfortunately) required to help protect most systems from attack
because of the underlying software security flaws. Controls and safeguards such as firewalls and
IPSs are often added on after the fact once it’s determined that applications aren’t secure enough.
Too many developers depend on defenses at these levels to compensate for poor coding
practices. Doing so is an exercise in futility at best and sets up everyone (developers, users, and
network administrators) for failure long term. Regardless of the reasons behind the requirements,
such security layers at the host, OS, network, and physical levels are usually required for
adequate security.

The second role layered defenses play in secure software development is that the concept of
layered protection can, and should be, built-in to software. If any layer of security controls built-
in to the user-facing or backend environment fails, software must continue to operate in a secure
fashion, and it usually can when layered defense measures are in place. Layered software
defenses that developers need to consider include:

• Non-privileged accounts used to run services and daemons

• Secure user authentication

• Secure password management

• Memory wiping where sensitive data was previously stored

• Input validation

• Exception handling

• Error obfuscation

• Secure data storage and transmission

• Any number of security-by-obscurity methods such as running systems on uncommon
ports, installing commonly attacked software in non-default directories, and using
uncommon configuration filenames

It’s absolutely critical for developers not to rely on external security protection but instead create
these basic security layers within their software wherever it’s reasonable and practical.

26

Topic 2

Q 2.8: There is a general consensus in my development lab that as
long as firewalls and Secure Sockets Layer (SSL) are used, the
application is secure—is this true?
A: Many product managers, developers, and even systems administrators have fallen for the
firewall plus encryption of data in transit equals security myth. This lapse is arguably the most
dangerous of all mistakes made when it comes to protecting computers, networks, and the
sensitive information they process. Firewalls and data encryption only serve as supporting
security measures. A system that solely depends on such protection falls into the “candy
security” category, whereby a system has a hard, crunchy outside yet a soft, chewy inside—it’s
like having a steel door on a straw hut.

A big problem is that firewalls must be opened for certain applications to be accessible, which
often negates most of its benefits. Furthermore, SSL and other means of encrypting data in
transit (such as IPSec, PPTP, and WEP) do only that—encrypt data in transit. They provide no
protective measures to lock down the software on either end of the communication links.
Attackers often prefer SSL and other data communications encryption methods because it masks
what they are doing and intrusion detection systems (IDSs) and network-savvy administrators are
none the wiser!

Gartner estimates that as many as 70 percent of reported security attacks are at the application
level. Today’s networks—especially the Internet and its associated connectivity requirements—
don’t necessarily have the best interests of developers in mind. In fact, the scalability of the
Internet and large networks seems to be an enabler constantly working against reasonable levels
of information security. It’s therefore critical for developers to write software with security in
mind—incorporate security layers within their applications where practical—and to perform
ongoing security testing throughout the application development life cycle.

Q 2.9: Do I have anything to worry about as long as I develop software
with the Open Web Application Security Project (OWASP) Top 10
vulnerabilities in mind?
A: Several of the OWASP Top 10 categories such as Unvalidated Input, Broken Access Control,
and Improper Error Handling can be applied to all types of software—client/server applications,
embedded systems, and standalone programs. However, the OWASP Top 10 was written
specifically for Web application security. Its focus is on common threats and vulnerabilities
associated with Web-based systems, which can operate very differently from client/server,
standalone, and other legacy applications. Undoubtedly, many newly developed programs are
Web-based, but it’s important to look beyond Web application security best practices when
developing other types of software.

In addition to the OWASP Top 10, there is another commonly accepted grouping of software
security issues found in a book titled 19 Deadly Sins of Software Security (McGraw-Hill). This
piece by software security experts Michael Howard, David LeBlanc, and John Viega goes into
detail regarding former Director of The Department of Homeland Security’s National Cyber
Security Division Amit Yoran’s theory that “95 percent of all software bugs are caused by the
same 19 programming flaws.”

27

Topic 2

Additionally, there are several excellent books that developers and information security
professionals serious about software security should have on their bookshelves:

• Buffer Overflow Attacks (Syngress) by James C. Foster

• Hacking the Code: ASP.NET Web Application Security (Syngress) by Mark M. Burnett

• Programmer’s Security DeskRef (Syngress) by James C. Foster and Steven C. Foster

• Hacking: The Art of Exploitation (No Starch Press) by Jon Erickson

• HackNotes Web Security Portable Reference (McGraw-Hill Osborne) by Mike Shema

• The Database Hacker’s Handbook (Wiley) by David Litchfield, Chris Anley, John
Heasman, and Bill Grindlay

• Exploiting Software—How to Break Code (Addison Wesley) by Greg Hoglund and Gary
McGraw

Although OWASP Top 10, the 19 Deadly Sins, and the books listed are excellent resources for
secure coding practices, it’s important to not overlook other lesser-known standards and
frameworks in order to improve overall practices throughout the software development life
cycle:

• ISO/IEC 12207:1995—Information technology—Software life cycle processes

• ISO/IEC 17799:2005—Information technology—Security techniques—Code of practice
for information security management

• NIST Special Publication 800-27—Engineering Principles for Information Technology
Security

• NIST Special Publication 800-55—Security Metrics Guide for Information Technology
Systems

• NIST Special Publication 800-64—Security Considerations in the Information System
Development Life Cycle

Keep in mind that there is no one best resource. Rather than searching for the ideal fit, focus on
learning and using a variety of software security best practices, standards, and frameworks and
integrate the practices that best fit into your development environment.

28

Topic 2

Q 2.10: What development practices can we integrate into our daily
development routines to reduce the number of security
vulnerabilities?
A: Developing secure software is both an art and a science. It’s a tricky balancing act for
development managers to meet business needs, functional requirements, and time-to-market
pressures in addition to eliminating software security flaws on an ongoing basis.

Regardless of the development language used or the underlying operating system (OS), security-
focused development practices can and must be implemented throughout the software life cycle.
Rather than just learning about secure software development and how to set up a secure test
environment—both self-taught lessons or via training classes—and expecting to immediately see
quality improvements, it’s important to integrate various tools and techniques into the process.
This inclusion means performing peer code reviews, running static analysis tools, and carrying
out penetration tests on your software throughout the software development life cycle. It may
also mean taking advantage of security controls specific to the language and OS used.

Dennis Ritchie and Brian Kernigan, the authors of the classic book The C Programming
Language (Prentice Hall PTR) stated from the get-go that C is a relatively low-level language. In
addition, a large portion of applications are written in C and C++. These languages offer such
low-level control and flexibility that they can introduce pretty serious security vulnerabilities if
developers aren’t careful. Developers must understand that basically all languages (especially C
and C++) are, in a sense, working against them. This shortcoming requires developers to become
intimately familiar with the nuances of the language(s) with which they’re working.

However, a common problem is developers spending too much time on instruction sets and
syntax and not focusing on building secure code. Stable code that is well-written according to the
language requirements and other best practices does not necessarily translate into secure code.
Developers must strike a balance and not overlook the fact that security plays a large part in the
overall software quality equation.

Adding to the complexity, anytime developers are forced to learn a new language or drill down
further into their current language (for example, making OS, network, or cryptographic calls),
the odds of security errors and oversights greatly increase. This situation can be remediated
through a combination of experience and automated security analysis tools.

Oftentimes, developers are working on deadlines and have very little time for outside learning—
especially for security, a topic that has been out of developers’ hands for all too long. Support
from management and discipline on the part of developers is needed to make this happen. Even
if only a half an hour of ongoing education in software security takes place each day, that adds
up to more than 3 weeks of training each year, which can provide great benefits to the developers
and their teams. Supporting resources to help developers with such ongoing education include
the following:

• Software Development magazine (http://www.sdmagazine.com)

• Dr. Dobb’s Journal (http://www.drdobbs.com)

• 2600—The Hacker’s Quarterly (http://www.2600.com)

29

http://www.sdmagazine.com/
http://www.drdobbs.com/
http://www.2600.com/

Topic 2

These periodicals consistently provide insight into areas such as the latest security testing tools,
coding methods, and attacker techniques that anyone wishing to develop secure software needs
to read. Developers can also benefit from the security events and Webcasts hosted by Microsoft
at http://www.microsoft.com/events/security/default.mspx and additional resources provided by
the Secure Software Forum (http://www.securesoftwareforum.com/index.html).

Software security is not very sexy and some people find it boring if not downright annoying.
Coding flaws will never go away completely, but major changes can be made through improved
development practices over time. Writing secure software is an ongoing and enduring process
that requires strong influence from development managers and above. Secure development
practices should be seen as an enabler of writing solid applications and improving overall quality
long term—something that any developer can be proud of.

Q 2.11: What development tools can we integrate into our daily
development routines to reduce the number of security
vulnerabilities?
A: Many popular tools for quality assurance (QA) and penetration testing are available but those
are often brought into the picture towards the latter part of the development process. It is a best
practice to integrate tools into your daily development processes—especially early on when
coding first begins. Tools that integrate tightly into development consoles, analyze code line by
line, offer security policy customization, include security metrics for measuring quality, and
provide detailed recommendations can detect and prevent software defects at the “source” where
it counts.

Humans are ultimately to blame for security defects entered into software and many of these
defects can be discovered later in the development life cycle. However, there is no realistic way
to catch every problem after the fact. The best solution is to prevent security flaws from ever
entering the code. In this arena, static code analysis tools shine. These tools are not inexpensive
but can easily pay for themselves during the first software project by saving time, money, and
resources required to fix security and other software quality problems down the road.

Q 2.12: Is it really worth encrypting our database if we have
implemented various security layers in our software? If so, what parts
of the database should we encrypt?
A: A layered software security defense consisting of input validation, secure password
authentication and password management, and proper error handling can go a long way toward
improving software security. However, if it’s determined (via threat modeling or risk analysis)
that the database your application uses is susceptible to attack and puts sensitive information at
risk, you should consider database encryption.

30

http://www.microsoft.com/events/security/default.mspx
http://www.securesoftwareforum.com/index.html

Topic 2

Database encryption is one of those often-overlooked areas of information security; however, it’s
becoming a necessity in today’s environments and can be an effective protection measure to
complement other software security controls. Attacks against sensitive data such as Social
Security numbers, credit card numbers, and health information housed in backend databases is a
growing business problem. Not only are identities being stolen, credit cards being used in an
unauthorized fashion, and private information being leaked (see
http://www.privacyrights.org/ar/ChronDataBreaches.htm for recent breaches), companies and
their executives are facing steep fines and prison time for not taking the proper precautions.

Most of the responsibility for database security is currently in the hands of network
administrators and security managers. However, software developers who see the big picture and
write their applications with secure data storage in mind can have a great selling point and
competitive advantage in the market. Obviously, there are various technical architecture issues
related to database encryption, but encryption is an option that developers should consider in the
planning, requirements, and design phases of the development life cycle.

Regarding what to encrypt, it depends on how much of a performance hit can be tolerated and
how much of the database needs to be protected. Database encryption can cause performance hits
that can mostly be alleviated by using a third-party encryption accelerator. It’s therefore critical
to determine which tables or rows and columns need to be protected and only protect the
minimum necessary.

Keep the following practices in mind if you decide to encrypt all or part of your application’s
database:

• Consider built-in protective measures such as those in included Microsoft’s SQL Server
2005

• Determine how you’ll design your key escrow

• Avoid storing encryption keys within the application or the database itself

• Clear memory used for key storage once the keys are no longer needed

• Ideally, use different keys for different data sets and for different purposes to minimize
losses in the event of a key compromise

• Consider hardware-based cryptographic accelerators or off-loading to a computational
server

• Asymmetric (aka public key) encryption has a greater performance impact than
symmetric encryption (aka private key)

31

http://www.privacyrights.org/ar/ChronDataBreaches.htm

Topic 3

Topic 3: Auditing for Software Security

Q 3.1: What benefits will a formal software audit offer compared with
other types of software security testing?
A: There are various benefits of performing a formal audit over simply testing for security
vulnerabilities. An audit in its truest sense compares what is said is being done with what is
actually in place. Therefore, a formal audit can help ensure compliance with internal policies and
external regulations and verify that secure coding practices are taking place. An audit can also
highlight where discrepancies exist in development practices such as one team strictly adhering
to security policies and standards while another isn’t taking security seriously. Formal audits are
also good tools to measure the performance and quality of work delivered by outsourced
providers.

Many customers require a software audit (SAS70 or ICA Handbook—Assurance Section 5900)
as a part of their due diligence before making a large investment. If you’ve had a recent software
audit, you can use the results for sales and marketing purposes and as a tool for product
differentiation. Taking this a step further, a formal source code audit can offer the long-term
benefits of industry and governmental regulatory compliance.

Additionally, if such an audit is performed by an independent third-party, the audit can provide
information from a fresh set of eyes without bias or political pressures to scrutinize security
holes in some areas while skimming over others. A third-party may also have several software
auditing tools to look at your source code from different perspectives.

Q 3.2: What are the different types of tests and tools I can use to
assess the security of my software?
A: There are four main types of testing methods (two of which are manual and two that are
automated) you can use to test software for security vulnerabilities:

• Manual code reviews whereby an individual or team of software security experts sifts
through each line of code looking for potential or known problems

• Static analysis tools that analyze source code automatically—often much more quickly
and efficiently than a human would be able to. There are both freeware/open source and
commercial tools that can be language-specific tools (C or Java-focused) and all-in-one
(can review most popular types of source code)

• Manual security assessment whereby an individual or team of information security
experts pokes and prods the application in a real-world environment looking for exploits

• Real-time analysis tools that automatically analyze the working software in a real-world
environment—often much more quickly and efficiently than a human would be able to.
There are both freeware/open-source and commercial tools that can analyze standalone
programs, client/server applications, Web applications, and database systems

The different methods and tools have advantages and limitations and can complement each
another. There is not a best or comprehensive way to test for all software security vulnerabilities.
However, each method plays a critical role in software security.

32

Topic 3

Q 3.3: How can I determine whether we should perform a software
security audit?
A: There are several factors that help determine whether a software security audit should be
performed. This decision is strictly up to each business, development team, or individual
developer, but some key factors driving such audits are:

• Internal policy requirements

• Industry or governmental (state and/or federal) regulations and laws

• General market demands

• Customer or business partner contractual requirements

• Mergers and acquisitions

• Outsourced development

• Limitations on security expertise and resources

If formal security testing such as penetration testing or static analysis has never occurred and
your organization cannot afford to sell or use software that is vulnerable to myriad security
problems, a software security audit is highly recommended.

Q 3.4: Who should perform formal software security audits?
A: Who performs a formal software security audit for your organization depends on your
business needs and what you want to get out of the security audit. The following people serve
equally important roles in auditing the security of your software:

• Internal auditors seeking to assess security controls for regulatory or internal policy
enforcement purposes

• Business partners looking to determine the viability of your software and the value it can
add to their business endeavors

• Customers looking to determine how your software can meet their needs and how secure
and compliant with government regulations it will help them become

• Independent external auditors you hire to audit the controls built into of your software
based on internationally accepted best practices such as COBIT

• Independent information security consultants you hire to assess the security of your
software from an outsider’s perspective based on internationally accepted best practices
such as the newly revised ISO/IEC 17799:2005 and the OWASP Top 10

The person that should ultimately perform your software audits is the person who has a
contractual or legal obligation to do so or is the person with the right skills you need to assess the
security of your software.

33

Topic 3

Q 3.5: Which areas of our software should we audit?
A: Ideally, every aspect of your software should be audited for security vulnerabilities, but this
ability is not always realistic or necessary. You or your auditor may have a pre-determined
methodology for auditing software. At a minimum, software audits should cover security best
practices and standards as much as possible.

The critical areas to concentrate on are as follows:

• Source code

• Authentication methods

• Password management

• Input validation

• Exception handling

• Data storage methods and safeguards used

• Data transmission methods and protocols and safeguards used

• Proper packaging in order to hide configuration details—especially with regard to Web
applications

You might want to test your software’s resiliency to Denial of Service (DoS) attacks. If so,
proceed with caution as many DoS tests can cause system hang-ups, crashes, and so on that can
lead to data corruption unwanted downtime.

Keep in mind that a program’s overall logical structure isn’t necessarily defined by its source
code alone. Additional layers, services, computers, and networks are often in the mix
complicating matters. Therefore, secure standalone code doesn’t always translate to a secure
application or system. Also, odds are that security vulnerabilities are present in various runtime
modules of your software—not just in the code that handles your software’s security controls.

At a higher level, an area often overlooked during audits is the actual development process. If
time, money, and resources permit, this are is useful to review to uncover vulnerabilities that
might have otherwise been overlooked.

34

Topic 3

Q 3.6: What are some common software security auditing mistakes?
A: There are many software security auditing oversights and mistakes that can have a serious
impact on the quality of software. First, looking at each piece or unit independently without
considering the big picture is a big mistake. In other words, if you don’t review how the code
interacts and operates with the hundreds and often thousands of variables present in today’s
networked environments, many exploits can go unnoticed. Thus, it’s critical to utilize more than
one auditing method and look at your software and systems from more than one perspective.

Another common mistake is relying too much on automated tools to find everything. There
needs to be human involvement testing the software manually. Keep in mind though, that manual
code reviews or penetration tests aren’t the complete solution either. With today’s complex
software and network environments, there are simply too many variables and too many tests for
any human being to possibly handle.

Many people often overlook the value of code reviews. Likewise with penetration testing—they
complement each other and play a significant role in finding the largest number of vulnerabilities
possible.

In addition, many software security auditors rely too heavily on checklists. Best practices and
software security frameworks form a good basis for testing, but the most vulnerabilities will be
unveiled by experienced (and most often) technical auditors that understand networks,
computers, and software at the packet- and bit-levels.

Finally, perhaps the biggest mistake of all is when software security auditors believe that all
possible testing scenarios have been executed and all security flaws have be discovered. Again,
technical expertise and system complexity play a major role here. Thoughts of 100 percent
software security are delusional at best. This problem is mitigated by using static analysis tools.

Q 3.7: How can I determine whether we need a formal software
security audit or other type of test such as a manual code review or
penetration test?
A: If software security and software quality are a priority, all three types of reviews need to be
performed. However, the type of testing you can perform depends on the type of software you
have. For example, you won’t have the source code to test for an application that is a commercial
off-the-shelf product. This situation leaves certain aspects of security up in the air because you
cannot test from every perspective. Of course, if your license agreement doesn’t forbid it, you
can always reverse engineer an application using a disassembler such as IDA Pro
(http://www.datarescue.com/idabase/index.htm). However, custom software makes it easier to
look for coding problems, but you won’t be able to assess how the software runs and which
vulnerabilities are present in every possible environment.

35

http://www.datarescue.com/idabase/index.htm

Topic 3

The major downsides to each type of testing are:

• Formal software security audits are often limited in scope and technical details

• Penetration tests only uncover security flaws during runtime and often cannot get to the
heart of the problem—the source code

• Automated code reviews only uncover security flaws at the source code level and may
not point to issues that can be exploited when the software is running in a real-world
setting

• Manual code reviews can be extremely difficult to perform—especially on large, multi-
function applications—and flaws are easy to overlook

Keep in mind that although each method has its pros and cons, all three are necessary to ensure
the best assessment from all possible angles.

Using a real-world example, buffer overflows and other memory errors are an elusive and
widespread problem. In fact, it’s a well-known fact that most security vulnerabilities are based
on memory allocation problems. Further complicating the issue is when one security flaw such
as a buffer overflow is combined with reentrant code to lead to something exponentially more
dangerous. This problem in and of itself calls for looking at software security vulnerabilities
from as many perspectives as possible including static analysis, run-time analysis, and even
compiler options and other memory error detection tools when possible.

Q 3.8: What features should I look for in software security testing
tools?
A: The criteria for shopping for software security testing tools depends on which type of testing
tool you’ll be using. The following list provides generic features and characteristics to look for at
a minimum:

• Platform and language support

• Ease of use

• Reporting

• Automatic updates for new vulnerabilities and program patches

• Customizable security policies

• Ability to prioritize software vulnerabilities discovered

• Well-known and respected in the information security and software development
industries and is willing to provide customer references

• Long-term viability of the vendor

• Acquisition, operational, and ongoing support costs
The easier a tool is to integrate into the auditing, testing, or development process, the higher the
likelihood that it will be utilized. Tools that are inconvenient or offer little value are likely to be
overlooked or frowned upon in the name of software development and security testing
efficiency.

36

Topic 3

Q 3.9: Would a software security audit performed by an external and
independent consultant produce better results than one performed by
our own internal IT auditing staff?
A: Not necessarily but it can be beneficial. Table 3.1 highlights the pros and cons of outside
expertise to perform your software security audits.

Pros Cons

Provides a fresh look at your source code and
application

An outsider will not know your software like your team
does

Less chance of bias due to political influences The necessary knowledge transfer may not occur due
to resentment or politics

Can save time and resources to let your team
focus on other tasks and areas of expertise

May require a considerable upfront investment

Outside auditors can often spread the cost of
their security assessment tools across all their
clients, which helps minimize the costs of that
portion of the testing project

It can be difficult to find professionals with extensive
knowledge in both development and security

Table 3.1: The pros and cons of using an outside expert for software security audits.

This decision is ultimately a business decision that depends on varying factors. If the decision is
made to hire an outsider, be sure to consider the following:

• Cost compared with performing the review in-house

• Experience of the auditor

• Technical knowledge of the auditor

• Tools the auditor will use

• Security and software development certifications

• Customer references

• Sample deliverables

37

Topic 3

Q 3.10: Are there specific software security standards and best
practices we can look for to ensure we’re getting the most from our
auditing investment?
A: Although not absolutely necessary, it can be beneficial to have your software security auditor
perform an audit against various standards and frameworks such as the following:

• OWASP Top 10 (http://www.owasp.org/documentation/topten.html)

• ISO/IEC 12207:1995—Information technology—Software life cycle processes
(http://www.iso.org)

• ISO/IEC 17799:2005—Information technology—Security techniques—Code of practice
for information security management (http://www.iso.org)

• NIST Special Publication 800-27—Engineering Principles for Information Technology
Security (http://csrc.nist.gov/publications/nistpubs/800-27/sp800-27.pdf)

• NIST Special Publication 800-55—Security Metrics Guide for Information Technology
Systems (http://csrc.nist.gov/publications/nistpubs/800-55/sp800-55.pdf)

• NIST Special Publication 800-64—Security Considerations in the Information System
Development Life Cycle (http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-
64.pdf

Also look for certifications that can be beneficial to you—especially if you have to share your
auditing reports with upper management, business partners, or clients. Just because a security
auditor is certified doesn’t mean they’re necessarily qualified to do the job.

Basic security and audit certifications to look for include CISSP, SANS GIAC, Certified Ethical
Hacker, and CISA. Software development certifications can be a bonus—especially when
combined with security certifications, so look for certifications such as Microsoft’s MCSD, MCP
.Net, and MCDBA as well as Sun’s SCJP, SCJD, and SCEA.

Q 3.11: Is a source code audit all that is needed to identify the big
picture software weaknesses as well as granular vulnerabilities?
A: A source code audit is an excellent way to find both high-level design flaws and deeply
ingrained software security vulnerabilities. In fact, it’s arguably the best way overall to root out
security flaws that might not otherwise be discovered through other types of security audits until
it’s too late. Such is especially true when automated source code auditing tools customizable
with various security policies are used.

The downsides to an audit may involve the auditor not being technical enough to delve in deeply
or the scope being limited to a high-level set of best practices to be compared against. A
comprehensive software security audit would include other types of testing—particularly manual
assessments and runtime assessments such as penetration tests.

38

http://www.owasp.org/documentation/topten.html
http://www.iso.org/
http://www.iso.org/
http://csrc.nist.gov/publications/nistpubs/800-27/sp800-27.pdf
http://csrc.nist.gov/publications/nistpubs/800-55/sp800-55.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf
http://csrc.nist.gov/publications/nistpubs/800-64/NIST-SP800-64.pdf

Topic 3

Q 3.12: What should we do once security vulnerabilities have been
identified by an audit?
A: Not all vulnerabilities and related flaws are on the scale, so the first step is to prioritize your
vulnerabilities. Four key factors play into this prioritization:

• Impact if the vulnerability is exploited

• Likelihood of the vulnerability being exploited

• Cost to remediate

• Time to remediate

This analysis may require the expertise of someone who understands not only the vulnerabilities
and underlying technical complexities but also the basics of risk management. This analysis will
likely require input from several individuals, including those outside of development working in
information security or a similar functional area.

Once vulnerabilities have been identified, the typical software change control and configuration
management steps should be implemented, and the problem should be addressed. The IT
Infrastructure Library (ITIL) documents used for implementing an IT Service Management
(ITSM) framework (see http://www.itil.co.uk and http://www.itil-itsm-world.com for more
information) would be beneficial here.

All of these security audit follow-up tasks take time, money, and staff resources to complete.
Therefore, it’s critical to involve management (development management, security management,
and other management as needed) to ensure they’re completed in a timely fashion and on a
reasonable budget.

39

http://www.itil-itsm-world.com/

Topic 4

Topic 4: Testing for Software Security

Q 4.1: What methods are available for my developers and quality
assurance staff to do their own software security testing and what are
the differences between each method?
A: There are two main options for developers and quality assurance (QA) staff:

• Performing manual code reviews

• Performing automated static analysis testing

The first method is a good way of finding security problems you may not have otherwise
discovered; however, it’s very time consuming and tedious work and not a highly effective
method for achieving secure software. Such is especially true if you have limited development
and QA resources.

The second method is much more time-efficient and cost-effective way for developers and QA
staff to check and cross-check their own work. If you’re spending time to review code
throughout the software development life cycle (SDLC)—especially during pre-deployment—
it’s only logical to use such a tool. Security testing efficiency can be enhanced even more by
using static analysis tools that can be integrated into integrated development environments.

Q 4.2: Who should perform software security testing?
A: Everyone from system architects to developers to quality assurance (QA) personnel needs to
be involved in the software security process throughout the software development life cycle
(SDLC). This includes:

• Planning

• Specifying requirements

• Analysis

• Designing

• Developing

• Testing

• Implementing

• Maintaining

If testing is performed only by QA personnel towards the end of the life cycle during testing or
validation, it’s too late in the game to effectively and efficiently fix security problems.
Developers and QA staff members in conjunction with security experts and even higher-level
security auditors need to be included in the process starting with the planning phase. The longer
you wait to find security holes, the more difficult it is and the more costly it will become to fill
them.

40

Topic 4

Q 4.3: What software security testing techniques should my quality
assurance engineer be utilizing?
A: Security testing techniques are often very detailed and dependent on the software’s
architecture and complexity as well as the level of expertise of the tester. Certain generic quality
assurance (QA) techniques can detect security problems, but there are four main areas the QA
engineer can focus on to ensure the critical areas are covered:

• Consider every layer of the software when possible—test all features, not just the main
features

• Test for all success and failure paths and buffer limits where possible—attempt to create
both expected and unexpected failures; automated tools can help find the latter

• Look for patterns in the code’s logic that highlight potential vulnerabilities, such as how
certain authentication methods lead to validation of input or how memory is allocated
based on user type or program timing

• Cross-check to verify each other’s work if resources permit

Keep in mind that there is no way to reasonably expect that all security flaws will be
uncovered—especially during the QA testing phase. Chances are that certain security
vulnerabilities will be overlooked and may or may not rear their ugly heads down the road. Once
secure coding practices are built-in from the ground up, this won’t be as big of an issue.

Q 4.4: What software security tests should be performed during a
penetration test?
A: Penetration testing is about poking and prodding to glean information that can be used as a
stepping stone to glean more information and so on until the opportunity arises that the system
can be ‘broken into.’ Just like black-hat hacking, there are no steadfast rules that apply other than
the basic methodology of:

• Gathering general information about the application and the system its running on that
can be used a starting point

• Mapping out the software and system to obtain a general idea of the layout and
functionality

• Scanning the system to see which ports are open, what login banners may be present, and
how it generally responds to requests

• Testing for alternate paths and filenames—not just the defaults
• Looking for specific vulnerabilities
• Exploiting the vulnerabilities found in order to gain access to the system or crash it

altogether
During these phases, the penetration tester would assess various software components such as
authentication methods in use, password requirements, whether input validation is used,
exception handling, and how data is transmitted. These quick tests will likely reveal a lot of
information about the software that can, in turn, be used against it for further exploits.

41

Topic 4

Q 4.5: What are the benefits of performing static analysis code
reviews compared with runtime penetration testing?
A: Both static code analysis and runtime penetration testing are essential to obtain an in-depth
view of software security flaws. Penetration testing is a great method to test for vulnerabilities
from an attacker’s perspective. This method offers a tangible way of measuring the security of
your software in a real-world environment. However, static analysis tools may not assess the
software architecture, and without such an assessment, the scope and results can be limited so
ensure the product you’re considering can do this.

By analyzing the source code of software, you’re able to look deep at the heart of the system.
You can see how memory is utilized, how data is processed, and most importantly, you can
assess security vulnerabilities in their most basic form.

Different software flaws will likely be discovered during each method. It’s the combination of
the two methods that can reveal information that enables you to go back and fix software security
problems at the source—that is, from the very beginning of the software development life cycle
(SDLC). This information will also provide feedback and insight into the development process
itself, which can be used to make improvements over time.

Q 4.6: What steps should be taken to ensure the security
vulnerabilities found during the testing phase are properly
addressed?
A: Consistent follow-up and change control is necessary to effectively plug the software holes
that are found during testing. First, you need to organize and prioritize your findings into high
(likelihood of exploit and impact are great), medium (likelihood of exploit and impact are
considerable), and low (likelihood of exploit and impact are minimal). This is a type of mini
information risk assessment.

Once the security vulnerabilities are assigned a priority, formal change control steps (preferably
via a formal change control committee) must be taken to determine how the changes will be
implemented (as with any other software changes) perhaps similar to the following:

• Approved—Will adopt the change immediately (many of the high-priority vulnerabilities
fall into this category)

• Deferred—The change is valid but may adversely affect the project and will be tabled for
now (many of the low and some of the medium priority vulnerabilities fall into this
category)

• Field fixed—The change may be valid but not critical enough for a formal change in the
general code and will be fixed on an ad-hoc basis

• Refused—The change does not appear to be valid and provide business value

The next step is to actually fix the flaws you find—especially the high- and medium-priority
ones—based on whatever timetable works for you and/or your customer. Consider retesting if
you must to clarify any findings. Also, document any lessons learned for future reference. And
finally, test again during all development stages where possible and on a periodic basis after
general release.

42

Topic 4

Q 4.7: What is the difference between traditional testing and testing
for security?
A: Traditional software testing involves looking at practically every component for
functionality, usability, integration, and more—all but the most basic security testing is not
considered. The formal high-level categories for traditional testing are:

• Unit

• Functional

• Entrance

• Alpha (that is, system)

• Beta

• User/customer acceptance

When testing for security, the development and quality assurance (QA) team will perform the
listed steps and tests as well as integrate certain security tests (static analysis and manual
reviews) into the process. The earlier security testing begins, the earlier flaws can be found. Code
changes and additions combined often introduce new security vulnerabilities into the process.
This highlights the importance of using testing tools that are easily accessible to—if not
integrated into—the development environment.

Manual and automated real-time analysis such as penetration testing may come later in the
process such as the alpha or beta stages and beyond. This can provide a more real-world view of
the software’s operation; however, given the time-to-market deadlines of most software, certain
security vulnerabilities may be found too late in the game to remediate before general
availability. Thus, it is crucial to employ solid development practices from the very beginning.

Q 4.8: Are there any testing tool features that should exist above and
beyond those needed to perform higher-level audits?
A: There are literally hundreds of beneficial features and selling points to be considered before
making the investment in your software security testing tools. The following features provide the
most flexibility and testing capabilities for developers, security auditors, and other software
testing personnel:

• Integration into the development process and environment (how certain static analysis
tools can integrate with Visual Studio .NET)

• Ability to test various components and multiple layers of security (the in-depth testing
capabilities of Web application tools used for penetration testing)

• Graphical visualization of an application’s structure

• “What if” modeling for system architecture purposes

• Prepackaged security vulnerabilities

• Automatic updates for new vulnerabilities and program patches

43

Topic 4

• Ability to determine baseline defects and monitor for subsequent defects introduced
through regression

• Ability to keep an audit trail of software defects and associated fixes

• Ability to examine an application’s CPU cycles, network utilization, and disk space
requirements in order to detect and ward off potential Denial of Service (DoS) attacks.

• Customizable security policies

• Ability to exchange data and integrate with complementary testing tools

• Use of software security metrics to measure policy compliance

• Ability to prioritize software vulnerabilities discovered

• In-depth reporting for both technical personnel and high-level management

Such features cost money and often go unused; therefore, look for features that you and your
team members can best utilize for your specific needs.

Q 4.9: Is it better to have an external and independent expert perform
software security testing?
A: As mentioned in Q 3.3, the answer depends on various business needs such as expertise
required, availability of internal resources, desired tools, and more. You may not have a choice
in the matter, especially if a business partner, auditor, or client wants to bring in an independent
and unbiased set of eyes.

 See Q 3.3 for information about the pros and cons of hiring an independent auditor.

One of the biggest problems with testing for software flaws internally is the threat of a conflict of
interest. The developers who write the code may not necessarily do what is in the best interest of
the organization if it means that finding numerous flaws makes them look bad. By hiring an
independent outsider, the risk of this situation is much lower, and someone who has not been
caught up in the project can often see things that might otherwise be overlooked. Such is
especially helpful for finding vulnerabilities and poor programming practices that aren’t
necessarily exploitable at the moment but can pose problems down the road. Regardless of who
does the work, it’s critical to have someone who understands the importance of software
security, has the proper experience and tools, knows how to interpret the findings of the tools
they use, and can make practical recommendations that make good business sense.

44

Topic 4

Q 4.10: What software security testing tools are the best fit for quality
assurance (QA) professionals?
A: Automated static analysis tools are extremely efficient at reviewing millions of lines of code
in a very short amount of time and are likely the best pick for QA staff members. They’re not
perfect, but such tools are the only effective way to review complex software for security
vulnerabilities and detect them at the source.

QA professionals need to test both built-in security functions as well as how the software handles
exceptions and unexpected input. Given the nearly infinite input variables, it’s imperative to
have other types automated security testing tools to assist. This arena is where the myriad open
source and commercial hacking tools come in handy. The following list highlights tools that are
widely used and well-respected among penetration testers and other information security
professionals that QA staff could certainly benefit from:

Freeware Tools
• Paros Proxy (http://www.parosproxy.org) for trapping and modifying Web requests to

check for application vulnerabilities

• Wikto (http://www.sensepost.com/research/wikto) for assessing Web applications and
server misconfigurations

• Nessus (http://www.nessus.org) for assessing network, operating system (OS), and other
software vulnerabilities

• Brutus (http://www.hoobie.net/brutus) for testing software authentication systems and
cracking passwords

• Metasploit (http://www.metasploit.com) for exploiting vulnerabilities found in OSs,
applications, and databases

Commercial Tools
• QualysGuard (http://www.qualys.com) for assessing network, OS, and other software

vulnerabilities

• WebInspect (http://www.spidynamics.com) for assessing Web application vulnerabilities

• AppDetective (http://www.appsecinc.com) for assessing database vulnerabilities

45

http://www.parosproxy.org/
http://www.sensepost.com/research/wikto
http://www.nessus.org/
http://www.hoobie.net/brutus
http://www.metasploit.com/
http://www.qualys.com/
http://www.spidynamics.com/
http://www.appsecinc.com/

Topic 4

Q 4.11: How are penetration testing tools different from typical
software security testing tools?
A: Penetration testing tools are quite different from typical static and runtime analysis tools.
Penetration testing uses an ‘anything goes’ methodology, so the various types of penetration
testing tools are virtually unlimited. The various high-level categories of penetration test tools is
as follows:

• Web search engines such as Google (http://www.google.com)

• Internet registries such as ARIN (http://www.arin.net) and Whois.Net
(http://www.whois.net)

• Corporate Web sites that divulge company, network, and application information,
including user manuals, knowledge bases, and patches

• Port scanners such as SuperScan
(http://www.foundstone.com/resources/proddesc/superscan.htm) and Nmap
(http://www.insecure.org/nmap)

• Application mapping tools such as Amap (http://thc.org/thc-amap) and SMTPscan
(http://www.greyhats.org/?smtpscan)

• Vulnerability assessment tools such as QualysGuard (http://www.qualys.com), STAT
Scanner (http://www.stat.harris.com), and Nessus (http://www.nessus.org)

• Password crackers such as Proactive Password Auditor
(http://www.elcomsoft.com/ppa.html), Cain & Abel (http://www.oxid.it/cain.html), and
Brutus (http://www.hoobie.net/brutus)

• Network analyzers such as EtherPeek (http://www.wildpackets.com), CommView
(http://www.tamosoft.com), and AirMagnet Laptop Analyzer
(http://www.airmagnet.com/products/laptop.htm)

• Network protocol hacking tools such as ettercap (http://ettercap.sourceforge.net) and
dsniff (http://naughty.monkey.org/~dugsong/dsniff)

• Web application vulnerability assessment tools such as WebInspect
(http://www.spidynamics.com/products/webinspect/index.html), Hailstorm
(http://www.cenzic.com/products_services/cenzic_hailstorm.php), and Wikto
(http://www.sensepost.com/research/wikto)

• Web application proxies such as Paros Proxy (http://www.parosproxy.org)

46

http://www.google.com/
http://www.arin.net/
http://www.whois.net/
http://www.foundstone.com/resources/proddesc/superscan.htm
http://www.insecure.org/nmap
http://thc.org/thc-amap
http://www.greyhats.org/?smtpscan
http://www.qualys.com/
http://www.stat.harris.com/
http://www.nessus.org/
http://www.elcomsoft.com/ppa.html
http://www.oxid.it/cain.html
http://www.hoobie.net/brutus
http://www.wildpackets.com/
http://www.tamosoft.com/
http://www.airmagnet.com/products/laptop.htm
http://ettercap.sourceforge.net/
http://naughty.monkey.org/~dugsong/dsniff
http://www.spidynamics.com/products/webinspect/index.html
http://www.cenzic.com/products_services/cenzic_hailstorm.php
http://www.sensepost.com/research/wikto
http://www.parosproxy.org/

Topic 4

The problem with most of these tools is that they all run as separate programs and don’t
communicate with one another, which can make the software vulnerability detection and
correction process more difficult to manage—especially if multiple QA engineers are working on
the same project. However, these tools are still a vital component of an effective software
security testing program.

Complementing penetration testing tools, software analysis tools typically look at source code or
specific problems within an application’s executables and runtime libraries. Some tools are
standalone applications and others snap into integrated development environments. There is
arguably certain overlap when it comes to Web application tools, but by and large, there is a
significant difference between penetration testing tools and traditional software testing tools.
Each have their own place and each are suited for different types of security professionals.

Q 4.12: Should we focus time, money, and efforts on performing code
reviews, penetration tests, or both?
A: “Testing” as we’ve known it to this point has mostly been ignored when it comes to
application security, but that paradigm is changing. People on the bleeding edge of software
security are realizing that there is no one best solution for assessing software vulnerabilities.

Manual code reviews can be beneficial to help ensure secure software, but they cannot be relied
upon solely. Most developers and security experts are not qualified to look for security flaws
embedded in complex code—especially where there are thousands and often millions of lines of
it to pore over. Performing manual code reviews on anything outside of a couple of thousand
lines of code is too arduous to be effective.

Static analysis tools are extremely efficient at finding flaws very quickly that would otherwise
take unrealistic hours to find or would be overlooked altogether. Although a vital component of
secure software testing, they cannot be relied upon solely because they can’t see the application
running in real-world settings.

Penetration testing is an excellent way to test an application in a real-world environment and
there are plenty of tools to facilitate the process. However, the penetration tester may overlook
certain areas of an application or stop once one or two exploitable vulnerabilities are discovered.
It’s difficult to find deeply embedded security flaws through penetration testing, which can lead
to a false sense of security.

47

Topic 4

Q 4.13: What are some common oversights and mistakes made once
the software testing phase is complete?
A: Two major items are often ignored for varying business, technical, and political reasons. For
starters, a concept called threat modeling—which should actually take place before the testing
phase—is often overlooked. Threat modeling is the process of identifying sensitive information
that the software accesses, processes, or manages and then determining the threats that can
exploit such information. Developers, information security experts, and quality assurance (QA)
personnel need to think like an attacker analyzing the software looking for obvious and not-so-
obvious attack points. Once the weaknesses are found, countermeasures can be developed and
put in place where practical. If threats and vulnerabilities are serious, it may warrant a serious
software overhaul or re-design.

Another common problem that can throw a wrench in the software security assurance process is
failure to address the security flaws once they’re identified. Identifying security flaws is one
thing, but actually doing something about them is quite another. It’s easy for developers and
development managers to become busy putting out other fires and push security assessment
findings to the side. The only effective way to ensure the issues are properly addressed is for
management to lead the process—which includes software security being on the radar of upper
management. In addition, it’s important to utilize software quality metrics to ensure that security
is being dealt with properly and that the overall development life cycle is treated like any other
important business function.

48

	Introduction to Realtimepublishers
	Topic 1: Managing for Software Security
	Q 1.1: What software security-related problems exist in busi
	The Root Cause
	Contributing Factors

	Q 1.2: What software is affected by poor quality and securit
	Q 1.3: As a software development manager, why should I be wo
	Q 1.4: What are some tangible benefits of enhancing the secu
	Q 1.5: What can I do to feel confident answering the common
	Q 1.6: Is there a solid security strategy I can implement to
	Integration with the Software Development Life Cycle
	Establish Goals
	Proven Strategies

	Q 1.7: With so many security technologies at our disposal, h
	Q 1.8: At what point in the development process should we fo
	Q 1.9: Which software components and functions are plagued b
	Q 1.10: As a business executive, why should I be worried abo
	Q 1.11: Are there specific areas I should be concerned with
	Q 1.12: Are there specific software security areas I should
	Topic 2: Developing for Software Security
	Q 2.1: Why should software developers be bothered with tacki
	Q 2.2: What key areas should our development team focus on t
	Q 2.3: What are some commonly overlooked software security v
	Revealing Comments
	Buffer Overflows
	Mishandling Passwords and Logins
	Assumption that Encrypting Data in Transit Means Everything
	Not Considering the Network or Operating System Layers

	Q 2.4: How can software security vulnerabilities be categori
	Denial of Service
	Authentication Weaknesses
	Input Attacks
	Directory Traversals
	Improper Storage of Files and Data

	Q 2.5: Are there any common software development practices t
	Q 2.6: Are there other technologies or layered security meas
	Q 2.7: What role does a layered security defense play in sof
	Q 2.8: There is a general consensus in my development lab th
	Q 2.9: Do I have anything to worry about as long as I develo
	Q 2.10: What development practices can we integrate into our
	Q 2.11: What development tools can we integrate into our dai
	Q 2.12: Is it really worth encrypting our database if we hav
	Topic 3: Auditing for Software Security
	Q 3.1: What benefits will a formal software audit offer comp
	Q 3.2: What are the different types of tests and tools I can
	Q 3.3: How can I determine whether we should perform a softw
	Q 3.4: Who should perform formal software security audits?
	Q 3.5: Which areas of our software should we audit?
	Q 3.6: What are some common software security auditing mista
	Q 3.7: How can I determine whether we need a formal software
	Q 3.8: What features should I look for in software security
	Q 3.9: Would a software security audit performed by an exter
	Q 3.10: Are there specific software security standards and b
	Q 3.11: Is a source code audit all that is needed to identif
	Q 3.12: What should we do once security vulnerabilities have
	Topic 4: Testing for Software Security
	Q 4.1: What methods are available for my developers and qual
	Q 4.2: Who should perform software security testing?
	Q 4.3: What software security testing techniques should my q
	Q 4.4: What software security tests should be performed duri
	Q 4.5: What are the benefits of performing static analysis c
	Q 4.6: What steps should be taken to ensure the security vul
	Q 4.7: What is the difference between traditional testing an
	Q 4.8: Are there any testing tool features that should exist
	Q 4.9: Is it better to have an external and independent expe
	Q 4.10: What software security testing tools are the best fi
	Freeware Tools
	Commercial Tools

	Q 4.11: How are penetration testing tools different from typ
	Q 4.12: Should we focus time, money, and efforts on performi
	Q 4.13: What are some common oversights and mistakes made on

